Package: gcplyr 1.10.0
gcplyr: Wrangle and Analyze Growth Curve Data
Easy wrangling and model-free analysis of microbial growth curve data, as commonly output by plate readers. Tools for reshaping common plate reader outputs into 'tidy' formats and merging them with design information, making data easy to work with using 'gcplyr' and other packages. Also streamlines common growth curve processing steps, like smoothing and calculating derivatives, and facilitates model-free characterization and analysis of growth data. See methods at <https://mikeblazanin.github.io/gcplyr/>.
Authors:
gcplyr_1.10.0.tar.gz
gcplyr_1.10.0.zip(r-4.5)gcplyr_1.10.0.zip(r-4.4)gcplyr_1.10.0.zip(r-4.3)
gcplyr_1.10.0.tgz(r-4.4-any)gcplyr_1.10.0.tgz(r-4.3-any)
gcplyr_1.10.0.tar.gz(r-4.5-noble)gcplyr_1.10.0.tar.gz(r-4.4-noble)
gcplyr_1.10.0.tgz(r-4.4-emscripten)gcplyr_1.10.0.tgz(r-4.3-emscripten)
gcplyr.pdf |gcplyr.html✨
gcplyr/json (API)
NEWS
# Install 'gcplyr' in R: |
install.packages('gcplyr', repos = c('https://mikeblazanin.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/mikeblazanin/gcplyr/issues
- example_design_tidy - Design for example growth curve data A tidy-shaped dataset with the experimental design (i.e. plate layout) for the example data included with 'gcplyr'.
- example_widedata - Example noisy growth curve data in wide format
- example_widedata_noiseless - Example growth curve data in wide format
Last updated 5 months agofrom:498b415359. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 06 2024 |
R-4.5-win | OK | Nov 06 2024 |
R-4.5-linux | OK | Nov 06 2024 |
R-4.4-win | OK | Nov 06 2024 |
R-4.4-mac | OK | Nov 06 2024 |
R-4.3-win | OK | Nov 06 2024 |
R-4.3-mac | OK | Nov 06 2024 |
Exports:aucblock_tidydesigncalc_derivcentroidcentroid_bothcentroid_xcentroid_ydoubling_timeextr_valfind_local_extremafind_threshold_crossesfirst_abovefirst_belowfirst_maximafirst_minimafirst_peakfrom_excelgc_smooth.splineimport_blockdesignsimport_blockmeasureslag_timemake_designmake_designpatternmake_examplemake_tidydesignmakemethod_train_smooth_datamax_gcmdpmerge_dfsmin_gcmoving_averagemoving_medianpaste_blockspredict_interpolationprint_dfread_blocksread_tidysread_widesseparate_tidysmooth_datasolve_linearto_exceltrain_smooth_datatrans_block_to_widetrans_wide_to_tidyuninterleavewhich_max_gcwhich_min_gcwrite_blocks
Dependencies:clicpp11dplyrfansigenericsgluelifecyclemagrittrpillarpkgconfigpurrrR6rlangstringistringrtibbletidyrtidyselectutf8vctrswithr
Analyzing data
Rendered fromgc06_analyze.Rmd
usingknitr::rmarkdown
on Nov 06 2024.Last update: 2024-07-09
Started: 2023-11-03
Best practices and other tips
Rendered fromgc08_conclusion.Rmd
usingknitr::rmarkdown
on Nov 06 2024.Last update: 2024-07-09
Started: 2023-11-03
Dealing with noise
Rendered fromgc07_noise.Rmd
usingknitr::rmarkdown
on Nov 06 2024.Last update: 2024-03-10
Started: 2023-11-03
Importing and reshaping data
Rendered fromgc02_import_reshape.Rmd
usingknitr::rmarkdown
on Nov 06 2024.Last update: 2024-03-09
Started: 2024-01-29
Incorporating experimental designs
Rendered fromgc03_incorporate_designs.Rmd
usingknitr::rmarkdown
on Nov 06 2024.Last update: 2024-03-10
Started: 2023-11-03
Introduction to using gcplyr
Rendered fromgc01_gcplyr.Rmd
usingknitr::rmarkdown
on Nov 06 2024.Last update: 2024-03-10
Started: 2023-11-03
Pre-processing and plotting data
Rendered fromgc04_preprocess_plot.Rmd
usingknitr::rmarkdown
on Nov 06 2024.Last update: 2024-03-10
Started: 2023-11-03
Processing data
Rendered fromgc05_process.Rmd
usingknitr::rmarkdown
on Nov 06 2024.Last update: 2024-03-09
Started: 2023-11-03
Using make_design to generate experimental designs
Rendered fromgc10_using_make_design.Rmd
usingknitr::rmarkdown
on Nov 06 2024.Last update: 2024-03-09
Started: 2024-03-08
Working with multiple plates
Rendered fromgc09_multiple_plates.Rmd
usingknitr::rmarkdown
on Nov 06 2024.Last update: 2024-07-09
Started: 2023-11-03