
Package: gcplyr (via r-universe)
November 6, 2024

Type Package

Title Wrangle and Analyze Growth Curve Data

Version 1.10.0

Date 2024-07-09

Description Easy wrangling and model-free analysis of microbial growth
curve data, as commonly output by plate readers. Tools for
reshaping common plate reader outputs into 'tidy' formats and
merging them with design information, making data easy to work
with using 'gcplyr' and other packages. Also streamlines common
growth curve processing steps, like smoothing and calculating
derivatives, and facilitates model-free characterization and
analysis of growth data. See methods at
<https://mikeblazanin.github.io/gcplyr/>.

License MIT + file LICENSE

URL https://mikeblazanin.github.io/gcplyr/,

https://github.com/mikeblazanin/gcplyr/

Depends R (>= 2.10)

Imports dplyr, rlang, stats, tidyr, tools, utils

Suggests caret, cowplot, ggplot2, knitr, lubridate, mgcv, readxl,
rmarkdown, sf, testthat (>= 3.0.0), xlsx

VignetteBuilder knitr

Config/testthat/edition 3

Encoding UTF-8

LazyData true

RoxygenNote 7.3.1

Config/pak/sysreqs libicu-dev

Repository https://mikeblazanin.r-universe.dev

RemoteUrl https://github.com/mikeblazanin/gcplyr

RemoteRef HEAD

RemoteSha 498b41535999a98ec168198ac4ea600485243da3

1

https://mikeblazanin.github.io/gcplyr/
https://mikeblazanin.github.io/gcplyr/
https://github.com/mikeblazanin/gcplyr/

2 Contents

Contents

auc . 3
block_tidydesign . 4
calc_deriv . 4
CentroidFunctions . 7
doubling_time . 8
example_design_tidy . 9
example_widedata . 9
example_widedata_noiseless . 10
ExtremaFunctions . 11
extr_val . 13
first_peak . 14
from_excel . 15
gc_smooth.spline . 16
import_blockdesigns . 16
import_blockmeasures . 18
lag_time . 19
makemethod_train_smooth_data . 21
make_design . 22
make_designpattern . 24
make_example . 25
make_tidydesign . 26
merge_dfs . 27
MinMaxGC . 28
MovingWindowFunctions . 29
paste_blocks . 30
predict_interpolation . 31
print_df . 32
read_blocks . 32
read_tidys . 35
read_wides . 37
separate_tidy . 39
smooth_data . 40
solve_linear . 41
ThresholdFunctions . 42
to_excel . 44
train_smooth_data . 45
trans_block_to_wide . 46
trans_wide_to_tidy . 47
uninterleave . 48
WhichMinMaxGC . 49
write_blocks . 50

Index 52

auc 3

auc Calculate area under the curve

Description

This function takes a vector of x and y values and returns a scalar for the area under the curve,
calculated using the trapezoid rule

Usage

auc(
x,
y,
xlim = NULL,
blank = 0,
subset = NULL,
na.rm = TRUE,
neg.rm = FALSE,
warn_xlim_out_of_range = TRUE,
warn_negative_y = TRUE

)

Arguments

x Numeric vector of x values
y Numeric vector of y values
xlim Vector, of length 2, delimiting the x range over which the area under the curve

should be calculated (where NA can be provided for the area to be calculated
from the start or to the end of the data)

blank Value to be subtracted from y values before calculating area under the curve
subset A vector of logical values indicating which x and y values should be included

(TRUE) or excluded (FALSE).
na.rm a logical indicating whether missing values should be removed
neg.rm a logical indicating whether y values below zero should be treated as zeros. If

FALSE, area under the curve for negative y values will be calculated normally,
effectively subtracting from the returned value.

warn_xlim_out_of_range

logical whether warning should be issued when xlim is lower than the lowest x
value or higher than the highest x value.

warn_negative_y

logical whether warning should be issued when neg.rm == FALSE but some y
values are below 0.

Value

A scalar for the total area under the curve

4 calc_deriv

block_tidydesign Turn tidydesign into block format

Description

This function allows users to convert designs created with tidydesign into a block format for easy
output to csv for inclusion in lab notebooks, etc in a human-readable format

Usage

block_tidydesign(
tidydesign,
collapse = NULL,
wellnames_sep = "_",
wellnames_colname = "Well"

)

Arguments

tidydesign A tidydesign data.frame (e.g. as created by make_tidydesign)

collapse NULL or a string to use for concatenating design elements together. If NULL
each design column will be put into its own block. If a string, that string will
be used to paste together all design elements and all design elements will be
returned in a single block

wellnames_sep A string used when concatenating rownames and column names to create well
names

wellnames_colname

Header for newly-created column containing the well names

Value

A list of blockdesign data.frames (if collapse is not NULL the list is of length 1

calc_deriv Calculate derivatives of vector of data

Description

Provided a vector of y values, this function returns either the plain or per-capita difference or deriva-
tive between sequential values

calc_deriv 5

Usage

calc_deriv(
y,
x = NULL,
return = "derivative",
percapita = FALSE,
x_scale = 1,
blank = NULL,
subset_by = NULL,
window_width = NULL,
window_width_n = NULL,
window_width_frac = NULL,
window_width_n_frac = NULL,
trans_y = "linear",
na.rm = TRUE,
warn_ungrouped = TRUE,
warn_logtransform_warnings = TRUE,
warn_logtransform_infinite = TRUE,
warn_window_toosmall = TRUE

)

Arguments

y Data to calculate difference or derivative of

x Vector of x values provided as a simple numeric.

return One of c("difference", "derivative") for whether the differences in y should be
returned, or the derivative of y with respect to x

percapita When percapita = TRUE, the per-capita difference or derivative is returned

x_scale Numeric to scale x by in derivative calculation
Set x_scale to the ratio of the units of x to the desired units. E.g. if x is in
seconds, but the desired derivative is in units of /minute, set x_scale = 60 (since
there are 60 seconds in 1 minute).

blank y-value associated with a "blank" where the density is 0. Is required when
percapita = TRUE.
If a vector of blank values is specified, blank values are assumed to be in the
same order as unique(subset_by)

subset_by An optional vector as long as y. y will be split by the unique values of this vector
and the derivative for each group will be calculated independently of the others.
This provides an internally-implemented approach similar to group_by and mu-
tate

window_width, window_width_n, window_width_frac, window_width_n_frac
Set how many data points are used to determine the slope at each point.
When all are NULL, calc_deriv calculates the difference or derivative of each
point with the next point, appending NA at the end.
When one or multiple are specified, a linear regression is fit to all points in the
window to determine the slope.

6 calc_deriv

window_width_n specifies the width of the window in number of data points.
window_width specifies the width of the window in units of x. window_width_n_frac
specifies the width of the window as a fraction of the total number of data points.
When using multiple window specifications at the same time, windows are con-
servative. Points included in each window will meet all of the window_width,
window_width_n, and window_width_n_frac.
A value of window_width_n = 3 or window_width_n = 5 is often a good default.

trans_y One of c("linear", "log") specifying the transformation of y-values.
'log' is only available when calculating per-capita derivatives using a fitting ap-
proach (when non-default values are specified for window_width or window_width_n).
For per-capita growth expected to be exponential or nearly-exponential, "log" is
recommended, since exponential growth is linear when log-transformed. How-
ever, log-transformations must be used with care, since y-values at or below 0
will become undefined and results will be more sensitive to incorrect values of
blank.

na.rm logical whether NA’s should be removed before analyzing

warn_ungrouped logical whether warning should be issued when calc_deriv is being called on
ungrouped data and subset_by = NULL.

warn_logtransform_warnings

logical whether warning should be issued when log(y) produced warnings.
warn_logtransform_infinite

logical whether warning should be issued when log(y) produced infinite values
that will be treated as NA.

warn_window_toosmall

logical whether warning should be issued when only one data point is in the
window set by window_width_n, window_width, or window_width_n_frac,
and so NA will be returned.

Details

For per-capita derivatives, trans_y = 'linear' and trans_y = 'log' approach the same value as
time resolution increases.

For instance, let’s assume exponential growth N = ert with per-capita growth rate r.

With trans_y = 'linear', note that dN/dt = rert = rN . So we can calculate per-capita growth
rate as r = dN/dt ∗ 1/N .

With trans_y = 'log', note that log(N) = log(ert) = rt. So we can calculate per-capita growth
rate as the slope of a linear fit of log(N) against time, r = log(N)/t.

Value

A vector of values for the plain (if percapita = FALSE) or per-capita (if percapita = TRUE) dif-
ference (if return = "difference") or derivative (if return = "derivative") between y values.
Vector will be the same length as y, with NA values at the ends

CentroidFunctions 7

CentroidFunctions Calculate centroid

Description

This function takes a vector of x and y values and returns the x and/or y position of the centroid of
mass of the area under the curve

Usage

centroid(
x,
y,
return,
xlim = NULL,
blank = 0,
subset = NULL,
na.rm = TRUE,
neg.rm = FALSE,
warn_xlim_out_of_range = TRUE,
warn_negative_y = TRUE

)

centroid_x(x, y, return = "x", ...)

centroid_y(x, y, return = "y", ...)

centroid_both(x, y, return = "both", ...)

Arguments

x Numeric vector of x values

y Numeric vector of y values

return One of c("x", "y", "both"), determining whether the function will return the x
value of the centroid, the y value of the centroid, or a vector containing x then y

xlim Vector, of length 2, delimiting the x range over which the centroid should be
calculated (where NA can be provided for the area to be calculated from the
start or to the end of the data)

blank Value to be subtracted from y values before calculating the centroid

subset A vector of logical values indicating which x and y values should be included
(TRUE) or excluded (FALSE).

na.rm a logical indicating whether missing values should be removed

neg.rm a logical indicating whether y values below zero should be treated as zeros. If
FALSE, the centroid for negative y values will be calculated normally, effectively
pulling the centroid towards the x axis.

8 doubling_time

warn_xlim_out_of_range

logical whether warning should be issued when xlim is lower than the lowest x
value or higher than the highest x value.

warn_negative_y

logical whether warning should be issued when neg.rm == FALSE but some y
values are below 0.

... Other arguments to pass to centroid

Details

This function uses st_centroid to calculate the centroid of mass

Value

A scalar for the x value (if return = 'x') or y value (if return = 'y') of the centroid of the data

doubling_time Calculate doubling time equivalent of per-capita growth rate

Description

Provided a vector of per-capita growth rates, this function returns the vector of equivalent doubling
times

Usage

doubling_time(y, x_scale = 1)

Arguments

y Vector of per-capita derivative data to calculate the equivalent doubling time of

x_scale Numeric to scale per-capita derivative values by
Set x_scale to the ratio of the the units of y to the desired units. E.g. if y is
in per-second, but the desired doubling time is in minutes, x_scale = 60 (since
there are 60 seconds in 1 minute).

Value

A vector of values for the doubling time equivalent to the per-capita growth rate supplied for y

example_design_tidy 9

example_design_tidy Design for example growth curve data A tidy-shaped dataset with the
experimental design (i.e. plate layout) for the example data included
with gcplyr.

Description

Wells A1...A8 through F1...F8 contain 48 different simulated bacterial strains growing alone. Wells
G1...G8 through L1...L8 contain the same 48 bacterial strains in an identical layout, but this time
growing in the presence of a phage

Usage

example_design_tidy

Format

A dataframe with 96 rows and 3 variables:

Well The well of the plate

Bacteria_strain The numbered bacterial strain growing in each well

Phage Whether or not the bacteria were simulated growing with phages

example_widedata Example noisy growth curve data in wide format

Description

A dataset containing example growth of 96 wells of simulated bacteria or bacteria and phages

Wells A1...A8 through F1...F8 contain 48 different simulated bacterial strains growing alone. Wells
G1...G8 through L1...L8 contain the same 48 bacterial strains in an identical layout, but this time
growing in the presence of a phage

Usage

example_widedata

Format

A dataframe with 97 rows and 97 variables:

time time, in seconds, since growth curve began

A1, A2...H11, H12 bacterial density in the given well

10 example_widedata_noiseless

Details

Bacterial populations exhibit diauxic growth as they approach their carrying capacity, and they also
evolve resistance in the face of selection from the phage population.

This data includes some simulated noise to approximate the noise generated during data collection
by plate readers

example_widedata_noiseless

Example growth curve data in wide format

Description

A dataset containing example growth of 96 wells of simulated bacteria or bacteria and phages

Wells A1...A8 through F1...F8 contain 48 different simulated bacterial strains growing alone. Wells
G1...G8 through L1...L8 contain the same 48 bacterial strains in an identical layout, but this time
growing in the presence of a phage

Usage

example_widedata_noiseless

Format

A dataframe with 97 rows and 97 variables:

time time, in seconds, since growth curve began

A1, A2...H11, H12 bacterial density in the given well

Details

Bacterial populations exhibit diauxic growth as they approach their carrying capacity, and they also
evolve resistance in the face of selection from the phage population.

This data does not include any simulated noise

ExtremaFunctions 11

ExtremaFunctions Find local extrema of a numeric vector

Description

These functions take a vector of y values and identify local extrema.

Usage

find_local_extrema(
y,
x = NULL,
window_width = NULL,
window_width_n = NULL,
window_height = NULL,
window_width_frac = NULL,
window_width_n_frac = NULL,
return = "index",
return_maxima = TRUE,
return_minima = TRUE,
return_endpoints = TRUE,
subset = NULL,
na.rm = TRUE,
width_limit = NULL,
width_limit_n = NULL,
height_limit = NULL

)

first_maxima(
y,
x = NULL,
window_width = NULL,
window_width_n = NULL,
window_height = NULL,
window_width_frac = NULL,
window_width_n_frac = 0.2,
return = "index",
return_endpoints = TRUE,
...

)

first_minima(
y,
x = NULL,
window_width = NULL,
window_width_n = NULL,
window_height = NULL,

12 ExtremaFunctions

window_width_frac = NULL,
window_width_n_frac = 0.2,
return = "index",
return_endpoints = TRUE,
...

)

Arguments

y Numeric vector of y values in which to identify local extrema

x Optional numeric vector of corresponding x values

window_width, window_width_n, window_height, window_width_frac,
window_width_n_frac

Arguments that set the width/height of the window used to search for local ex-
trema.
window_width is in units of x.
window_width_n is in units of number of data points.
window_height is the maximum change in y a single extrema-search step is
allowed to take.
window_width_n_frac is as a fraction of the total number of data points.
For example, the function will not pass a peak or valley more than window_width_n
data points wide, nor a peak/valley taller or deeper than window_height.
A narrower width will be more sensitive to narrow local maxima/minima, while
a wider width will be less sensitive to local maxima/minima. A smaller height
will be more sensitive to shallow local maxima/minima, while a larger height
will be less sensitive to shallow maxima/minima.

return One of c("index", "x", "y"), determining whether the function will return the
index, x value, or y value associated with the identified extremas

return_maxima, return_minima
logical for which classes of local extrema to return

return_endpoints

Should the first and last values in y be included if they are in the returned vector
of extrema?

subset A vector of logical values indicating which x and y values should be included
(TRUE) or excluded (FALSE).
If return = "index", index will be for the whole vector and not the subset of
the vector

na.rm logical whether NA’s should be removed before analyzing

width_limit Deprecated, use window_width instead

width_limit_n Deprecated, use window_width_n instead

height_limit Deprecated, use window_height instead

... (for first_maxima and first_minima), other parameters to pass to find_local_extrema

extr_val 13

Details

For find_local_extrema, one of window_width, window_width_n, window_height, or window_width_n_frac
must be provided.

For first_minima or first_maxima, set window_width_n_frac = NULL to override default width
behavior.

If multiple of window_width, window_width_n, window_height, or window_width_n_frac are
provided, steps are limited conservatively (a single step must meet all criteria).

In the case of exact ties in y values within a window, only the first local extrema is returned.

Value

find_local_extrema returns a vector corresponding to all the found local extrema.

first_maxima returns only the first maxima, so is a shortcut for find_local_extrema(return_maxima
= TRUE, return_minima = FALSE)[1]

first_minima returns only the first minima, so is a shortcut for find_local_extrema(return_maxima
= FALSE, return_maxima = FALSE)[1]

If return = "index", the returned value(s) are the indices corresponding to local extrema in the
data

If return = "x", the returned value(s) are the x value(s) corresponding to local extrema in the data

If return = "y", the returned value(s) are the y value(s) corresponding to local extrema in the data

extr_val Extract parts of an object

Description

A wrapper for [with handling of NA’s for use in dplyr::summarize()

Usage

extr_val(x, i, allNA_NA = TRUE, na.rm = TRUE)

Arguments

x object from which to extract element(s)
i index specifying element to extract.
allNA_NA logical indicating whether NA should be returned when all(is.na(i)) == TRUE.
na.rm a logical indicating whether missing index values should be removed.

Value

If all_NA = FALSE and na.rm = FALSE, identical to x[i].

If all_NA = FALSE and na.rm = TRUE, identical to x[i[!is.na(i)]].

If all_NA = TRUE, identical to x[i] unless all(is.na(i)) == TRUE, in which case returns NA

14 first_peak

first_peak Find the first local maxima of a numeric vector

Description

This function has been deprecated in favor of the identical new function first_maxima

Usage

first_peak(
y,
x = NULL,
window_width = NULL,
window_width_n = NULL,
window_height = NULL,
return = "index",
return_endpoints = TRUE,
...

)

Arguments

y Numeric vector of y values in which to identify local extrema

x Optional numeric vector of corresponding x values

window_width Width of the window (in units of x) used to search for local extrema. A narrower
width will be more sensitive to narrow local maxima/minima, while a wider
width will be less sensitive to local maxima/minima.

window_width_n The maximum number of data points a single extrema-search step is allowed to
take. For example, when maxima-finding, the function will not pass a valley
consisting of more than window_width_n data points.
A smaller window_width_n will be more sensitive to narrow local maxima/minima,
while a larger window_width_n will be less sensitive to narrow local max-
ima/minima.
If not provided, defaults to ~0.2*length(y)

window_height The maximum change in y a single extrema-search step is allowed to take. For
example, when maxima-finding, the function will not pass a valley deeper than
window_height.
A smaller window_height will be more sensitive to shallow local maxima/minima,
while a larger window_height will be less sensitive to shallow maxima/minima.

return One of c("index", "x", "y"), determining whether the function will return the
index, x value, or y value associated with the first maxima in y values

return_endpoints

Should the first or last value in y be allowed to be returned?

... Other parameters to pass to find_local_extrema

from_excel 15

Details

This function takes a vector of y values and returns the index (by default) of the first local max-
ima. It serves as a shortcut for find_local_extrema(return_maxima = TRUE, return_minima =
FALSE)[1]

If none of window_width, window_width_n, or window_height are provided, default value of
window_width_n will be used.

Value

If return = "index", a vector of indices corresponding to local extrema in the data

If return = "x", a vector of x values corresponding to local extrema in the data

If return = "y", a vector of y values corresponding to local extrema in the data

See Also

[first_maxima()]

from_excel A function that converts base-26 Excel-style letters to numbers

Description

A function that converts base-26 Excel-style letters to numbers

Usage

from_excel(x)

Arguments

x A vector of column names in Excel-style base-26 letter format (any values that
are already in base-10 will be returned as-is)

Value

A vector of numbers in base-10

16 import_blockdesigns

gc_smooth.spline Fit a Smoothing Spline

Description

This function is a wrapper for smooth.spline, which fits a cubic smoothing spline to the supplied
data, but includes the option to remove NA values, and returns values in the original order.

Usage

gc_smooth.spline(x, y = NULL, ..., na.rm = TRUE)

Arguments

x A vector giving the values of the predictor variable.

y A vector giving the values of the response variable. If y is missing or NULL, the
responses are assumed to be specified by x, with x the index vector.

... Additional arguments passed to smooth.spline.

na.rm logical whether NA’s should be removed before analyzing. Required to be
TRUE if any x or y values are NA.

Details

See smooth.spline

Value

Similar to smooth.spline, an object of class "smooth.spline" with many components. Differs in
that x, y, and w have NA’s at any indices where x or y were NA in the inputs, and x, y, and w are
returned to match the input x in order and length

import_blockdesigns Import blockdesigns

Description

Function to import block-shaped designs from files and return tidy designs. This function acts
as a wrapper that calls read_blocks, paste_blocks, trans_block_to_wide, trans_wide_to_tidy, and
separate_tidy

import_blockdesigns 17

Usage

import_blockdesigns(
files,
block_names = NULL,
block_name_header = "block_name",
join_as_cols = TRUE,
sep = NULL,
values_colname = "Designs",
into = NULL,
keep_blocknames = !join_as_cols,
warn_joinrows_nointo = TRUE,
join_designs = NULL,
...

)

Arguments

files A vector of filepaths relative to the current working directory where each filepath
is a single plate read to be read by read_blocks.

block_names Vector of names corresponding to each design element (each block). Inferred
from filenames, if not specified.
When keep_blocknames = TRUE, the output will have a column containing these
values, with the column name specified by block_name_header.
When join_as_cols = TRUE, the block_names are also used as the output col-
umn names for each separated design column.

block_name_header

When keep_blocknames = TRUE, the column name of the column containing
the block_names.

join_as_cols logical indicating whether blocks (if there are multiple) should be joined as
columns (i.e. describe the same plate) in the tidy output. If FALSE, blocks are
joined as rows (i.e. describe different plates) in the tidy output.

sep If designs have been pasted together, this specifies the string they should be split
apart by via separate_tidy.

values_colname When join_as_cols = FALSE and sep is not specified, all the design values
will be in a column named by values_colname. For other cases, see the Value
section.

into When sep is specified, into sets the names of the columns after splitting (see
Value section for behavior when into is not set).

keep_blocknames

logical indicating whether the column containing block_names (or those in-
ferred from file names) should be retained in the output. By default, blocknames
are retained only if join_as_cols = FALSE.

warn_joinrows_nointo

logical indicating whether warning should be raised when multiple blocks are
joined as rows (join_as_cols = FALSE) and sep is specified, but into is not
specified.

18 import_blockmeasures

join_designs Deprecated, use join_as_cols instead

... Other arguments to pass to read_blocks, paste_blocks, trans_block_to_wide,
trans_wide_to_tidy, or separate_tidy.
See Details for more information

Details

Other common arguments that you may want to provide via ... include:

startrow, endrow, startcol, endcol, sheet - specifying the location of design information inside
files to read_blocks.

wellnames_sep - specifying what character (or "" for none) should be used when pasting together
the rownames and column names. Note that this should be chosen to match the well names in your
measures.

into - specifying the column names resulting from using separate_tidy on the values_colname
column.

Note that import_blockdesigns cannot currently handle metadata specified via the metadata ar-
gument of read_blocks.

If you find yourself needing more control, you can run the steps manually, first reading with
read_blocks, pasting as needed with paste_blocks, transforming to tidy with trans_block_to_wide
and trans_wide_to_tidy, and separating as needed with separate_tidy.

Value

A tidy-shaped data.frame containing the design information from files. This always includes a
"Well" column.

If keep_blocknames = TRUE, this includes a column with the column name specified by block_name_header
and containing block_names (or block names inferred from file names).

The layout of the design values varies depending on the inputs:

If join_as_cols = TRUE, each block was joined as a column, with the columns named according
to block_names (or block names inferred from file names). In this case, if sep was specified, each
column was split by sep into columns named by splitting the corresponding block name by sep
(post-split column names can alternatively be specified directly via into).

Otherwise, when join_as_cols = FALSE, each block was joined as rows, with the column contain-
ing all design values named by values_colname. In this case, if sep was specified, that single
design column was split by sep into columns named by splitting values_colname (post-split col-
umn names can alternatively be specified directly via into).

import_blockmeasures Import blockmeasures

Description

Function to import blockmeasures from files and return widemeasures This function acts as a wrap-
per to call read_blocks, uninterleave, then trans_block_to_wide in one go

lag_time 19

Usage

import_blockmeasures(
files,
num_plates = 1,
plate_names = NULL,
wellnames_sep = "",
...

)

Arguments

files Vector of filenames (as strings), each of which is a block-shaped file containing
measures data. File formats can be .csv, .xls, or .xlsx

num_plates Number of plates. If multiple plates uninterleave will be used to separate block-
measures into those plates accordingly

plate_names (optional) Names to put onto the plates when output

wellnames_sep String to use as separator for well names between rowname and column name

... Other arguments to pass to read_blocks, uninterleave, or trans_block_to_wide

Details

Common arguments that you may want to provide via ... include:

startrow, endrow, startcol, endcol, sheet - specifying the location of design information inside
files to read_blocks

metadata - specifying metadata to read_blocks

See read_blocks for more details

If you find yourself needing more control, you can run the steps manually, first reading with
read_blocks, separating plates as needed with uninterleave, then transforming to wide with trans_block_to_wide.

Value

If num_plates = 1, a wide-shaped data.frame containing the measures data.

if num_plates is greater than one, a list of data.frame’s, where each data.frame is wide-shaped.

lag_time Calculate lag time

Description

Lag time is calculated by projecting a tangent line at the point of maximum (per-capita) derivative
backwards to find the time when it intersects with the minimum y-value

20 lag_time

Usage

lag_time(
x = NULL,
y = NULL,
deriv = NULL,
trans_y = "log",
na.rm = TRUE,
slope = NULL,
x1 = NULL,
y1 = NULL,
y0 = NULL,
warn_logtransform_warnings = TRUE,
warn_logtransform_infinite = TRUE,
warn_min_y_mismatch = TRUE,
warn_multiple_maxderiv = TRUE,
warn_one_lag = TRUE,
warn_no_lag = TRUE

)

Arguments

x Vector of x values (typically time)

y Vector of y values (typically density)

deriv Vector of derivative values (typically per-capita derivative)

trans_y One of c("linear", "log") specifying the transformation of y-values.
'log' is the default, producing calculations of lag time assuming a transition to
exponential growth
'linear' is available for alternate uses

na.rm a logical indicating whether missing values or values that become NA or infinite
during log-transformation should be removed

slope Slope to project from x1,y1 to y0 (typically per-capita growth rate). If not pro-
vided, will be calculated as max(deriv)

x1 x value (typically time) to project slope from. If not provided, will be calculated
as x[which.max(deriv)].

y1 y value (typically density) to project slope from. If not provided, will be calcu-
lated as y[which.max(deriv)].

y0 y value (typically density) to find intersection of slope from x1, y1 with. If not
provided, will be calculated as min(y)

warn_logtransform_warnings

logical whether warning should be issued when log(y) produced warnings.
warn_logtransform_infinite

logical whether warning should be issued when log(y) produced infinite values
that will be treated as NA.

warn_min_y_mismatch

logical whether warning should be issued when min(y) does not equal min(y[!is.na(x)]).

makemethod_train_smooth_data 21

warn_multiple_maxderiv

logical whether warning should be issued when there are multiple points in
deriv that are tied for the highest, and only the first will be used.

warn_one_lag logical whether warning should be issued when some, but not all, inputs are
vectorized, and only one lag time value will be returned.

warn_no_lag logical whether warning should be issued when calculated lag time is less than
the minimum value of x

Details

For most typical uses, simply supply x, y, and deriv (using the per-capita derivative and trans_y
= 'log').

Advanced users may wish to use alternate values for the slope, origination point, or minimum y-
value. In that case, values can be supplied to slope, x1, y1, and/or y0, which will override the
default calculations. If and only if all of slope, x1, y1, and y0 are provided, lag_time is vectorized
on their inputs and will return a vector of lag time values.

Value

Typically a scalar of the lag time in units of x. See Details for cases when value will be a vector.

makemethod_train_smooth_data

Create method argument for train of growth curve smoothers

Description

This function generates a list which is compatible to be used as the method argument to train. This
enables users to call train directly themselves with smooth_data smoothing functions.

Usage

makemethod_train_smooth_data(sm_method, tuneGrid = NULL)

Arguments

sm_method Argument specifying which smoothing method should be used. Options include
"moving-average", "moving-median", "loess", "gam", and "smooth.spline".

tuneGrid A data frame with possible tuning value. The columns should be named the
same as the tuning parameters.
Note that, when using train, the tuneGrid must be passed both to this function
as well as directly to train.

Value

A list that can be used as the method argument to train. Contains elements: library, type, prob,
fit, parameters, grid, fit, and predict.

See documentation on using a custom model model in train for more details.

22 make_design

make_design Make design data.frame(s)

Description

This is a function to easily input experimental design elements for later merging with read data

Usage

make_design(
nrows = NULL,
ncols = NULL,
block_row_names = NULL,
block_col_names = NULL,
block_name_header = "block_name",
output_format = "tidy",
wellnames_numeric = FALSE,
wellnames_sep = "",
wellnames_colname = "Well",
colnames_first = FALSE,
lookup_tbl_start = 1,
pattern_split = "",
...

)

Arguments

nrows, ncols Number of rows and columns in the plate data
block_row_names, block_col_names

Names of the rows, columns of the plate blockmeasures data
block_name_header

The name of the field containing the block_names

output_format One of c("blocks", "blocks_pasted", "wide", "tidy") denoting the format of the
resulting data.frame
For easy merging with tidymeasures, leave as default of ’tidy’.
For human-readability to confirm design is correct, choose ’blocks’ or ’blocks_pasted’.
For writing to block-shaped file(s), choose ’blocks’ or ’blocks_pasted’.

wellnames_numeric

If block_row_names or block_col_names are not specified, then names will be
generated automatically according to wellnames_numeric.
If wellnames_numeric is TRUE, rows and columns will be numbered with "R"
and "C" prefixes, respectively.
If wellnames_numeric is FALSE, rows will be lettered A through Z, while
columns will be numbered

make_design 23

wellnames_sep A string used when concatenating rownames and column names to create well
names, when output_format = "wide" or output_format = "tidy"

wellnames_colname

Header for newly-created column containing the well names, when output_format
= "tidy"

colnames_first When wellnames are created for output_format = "wide" or output_format
= "tidy" by paste-ing the rownames and column names, should the column
names come first.

lookup_tbl_start

Value in the lookup table for the split pattern values that corresponds to the first
value in the vector.

Lookup table by default is c(1,2,...,8,9,A,B,...Y,Z,a,b,...,y,z). If, for example,
lookup_tbl_start = "A", then the lookup table will now be c(A,B,...Y,Z,a,b,...,y,z)

pattern_split character to split pattern elements provided in ... by, if they’re not already a
vector

... Each ... argument must be named, and must be a list with five elements:

1. a vector of the values

2. a vector of the rows the pattern should be applied to

3. a vector of the columns the pattern should be applied to

4. a string or vector denoting the pattern in which the values should be filled
into the rows and columns specified.

If it’s a string, will be split by pattern_split. Pattern will be used as the
indices of the values vector.

0’s refer to NA. The pattern will be recycled as necessary to fill all the wells of
the rows and columns specified.

5. a logical for whether this pattern should be filled byrow

Details

Note that either nrows or block_row_names must be provided and that either ncols or block_col_names
must be provided

Value

Depends on output_format:

If output_format = "blocks", a list of data.frame’s where each data.frame is block-shaped
containing the information for a single design element

If output_format = "blocks_pasted", a single data.frame containing the paste-ed information
for all design elements

If output_format = "wide", a wide-shaped data.frame containing all the design elements

If output_format = "tidy", a tidy-shaped data.frame containing all the design elements

24 make_designpattern

Examples

make_design(nrows = 8, ncols = 12,
design_element_name = list(c("A", "B", "C"),

2:7,
2:11,
"112301",
TRUE))

To be reminded what arguments are needed, use make_designpattern:
make_design(nrows = 8, ncols = 12,

design_element_name = make_designpattern(
values = c("A", "B", "C"),
rows = 2:7,
cols = 2:11,
pattern = "112301",
byrow = TRUE))

make_designpattern Make design pattern

Description

A helper function for use with make_design

Usage

make_designpattern(
values,
rows,
cols,
pattern = 1:length(values),
byrow = TRUE

)

mdp(values, rows, cols, pattern = 1:length(values), byrow = TRUE)

Arguments

values Vector of values to use

rows Vector of rows where pattern applies

cols Vector of cols where pattern applies

pattern Numeric pattern itself, where numbers refer to entries in values

byrow logical for whether pattern should be created by row

Value

list(values, rows, cols, pattern, byrow)

make_example 25

See Also

[gcplyr::make_design()]

Examples

make_design(nrows = 8, ncols = 12,
design_element_name = make_designpattern(

values = c("A", "B", "C"),
rows = 2:7,
cols = 2:11,
pattern = "112301",
byrow = TRUE))

make_example Create R objects or files as seen in vignette examples

Description

This function makes it easy to generate R objects or files that are created in the vignette examples.
Note that this function should not be counted on to produce the same output across different versions
of gcplyr, as it will be frequently changed to match the examples in the vignettes.

Usage

make_example(vignette, example, dir = ".")

Arguments

vignette Number of the vignette the example object or file is created in.

example Number of the example the object or file is created in.

dir The directory files should be saved into.

Value

An R object, or the names of the files if files have been written

26 make_tidydesign

make_tidydesign Make tidy design data.frames

Description

This is a function to easily input experimental design elements for later merging with read data

Usage

make_tidydesign(
nrows = NULL,
ncols = NULL,
block_row_names = NULL,
block_col_names = NULL,
wellnames_sep = "",
wellnames_colname = "Well",
wellnames_Excel = TRUE,
lookup_tbl_start = 1,
pattern_split = "",
colnames_first = FALSE,
...

)

Arguments

nrows, ncols Number of rows and columns in the plate data
block_row_names, block_col_names

Names of the rows, columns of the plate blockmeasures data

wellnames_sep A string used when concatenating rownames and column names to create well
names

wellnames_colname

Header for newly-created column containing the well names
wellnames_Excel

If block_row_names or block_col_names are not specified, should rows and
columns be named using Excel-style base-26 lettering for rows and numbering
for columns? If FALSE, rows and columns will be numbered with "R" and "C"
prefix.

lookup_tbl_start

Value in the lookup table for the split pattern values that corresponds to the first
value in the vector.
Lookup table by default is c(1,2,...,8,9,A,B,...Y,Z,a,b,...,y,z). If, for example,
lookup_tbl_start = "A", then the lookup table will now be c(A,B,...Y,Z,a,b,...,y,z)

pattern_split character to split pattern elements provided in ... by

colnames_first In the wellnames created by paste-ing the rownames and column names, should
the column names come first

merge_dfs 27

... Each ... argument must be a list with five elements:
1. a vector of the values
2. a vector of the rows the pattern should be applied to
3. a vector of the columns the pattern should be applied to
4. a string of the pattern itself, where numbers refer to the indices in the values
vector
0’s refer to NA
This pattern will be split using pattern_split, which defaults to every character
5. a logical for whether this pattern should be filled byrow

Details

Note that either nrows or block_row_names must be provided and that either ncols or block_col_names
must be provided

Examples: my_example <- make_tidydesign(nrows = 8, ncols = 12, design_element_name = list(c("Value1",
"Value2", "Value3"), rowstart:rowend, colstart:colend, "111222333000", TRUE) To make it easier
to pass arguments, use make_designpattern: my_example <- make_tidydesign(nrows = 8, ncols =
12, design_element_name = make_designpattern(values = c("L", "G", "C"), rows = 2:7, cols = 2:11,
pattern = "11223300", byrow = TRUE))

Value

a tidy-shaped data.frame containing all the design elements

merge_dfs Collapse a list of dataframes, or merge two dataframes together

Description

This function is essentially a wrapper for any of dplyr’s mutate-joins (by default, a full_join). The
most typical use of this function is to merge designs with measures data, or to use the collapse
functionality to merge a list of dataframes into a single dataframe. Merging is done by column
names that match between x and y.

Usage

merge_dfs(
x,
y = NULL,
by = NULL,
drop = FALSE,
collapse = FALSE,
names_to = NA,
join = "full",
warn_morerows = TRUE,
...

)

28 MinMaxGC

Arguments

x First data.frame, or list of data frames, to be joined

y Second data.frame, or list of data frames, to be joined

by A character vector of variables to join by, passed directly to the join function

drop Should only complete_cases of the resulting data.frame be returned?

collapse A logical indicating whether x or y is a list containing data frames that should
be merged together before being merged with the other

names_to Column name for where names(x) or names(y) will be entered in if collapse
= TRUE.
If a value of NA then names(x) or names(y) will not be put into a column in the
returned data.frame

join Type of join used to merge x and y. Options are ’full’ (default), ’inner’, ’left’,
and ’right’.

• A full join keeps all observations in x and y

• A left join keeps all observations in x

• A right join keeps all observations in y

• An inner join only keeps observations found in both x and y (inner joins are
not appropriate in most cases because observations are frequently dropped).

See full_join, left_join, right_join, or inner_join for more details

warn_morerows logical, should a warning be passed when the output has more rows than x and
more rows than y?

... Other arguments to pass to the underlying join function. See full_join, left_join,
right_join, or inner_join for options.

Value

Data.frame containing merged output of x and y

MinMaxGC Maxima and Minima

Description

Returns the maxima and minima of the input values.

Usage

max_gc(..., na.rm = TRUE, allmissing_NA = TRUE)

min_gc(..., na.rm = TRUE, allmissing_NA = TRUE)

MovingWindowFunctions 29

Arguments

... numeric or character arguments

na.rm a logical indicating whether missing values should be removed.

allmissing_NA a logical indicating whether NA should be returned when there are no non-
missing arguments passed to min or max (often because na.rm = TRUE but all
values are NA)

Details

These functions are wrappers for min and max, with the additional argument allmissing_NA.

Value

If allmissing_NA = FALSE, identical to min or max.

If allmissing_NA = TRUE, identical to min or max except that, in cases where min or max would
return an infinite value and raise a warning because there are no non-missing arguments, min_gc
and max_gc return NA

MovingWindowFunctions Moving window smoothing

Description

These functions use a moving window to smooth data

Usage

moving_average(
formula = NULL,
data = NULL,
x = NULL,
y = NULL,
window_width_n = NULL,
window_width = NULL,
window_width_n_frac = NULL,
window_width_frac = NULL,
na.rm = TRUE,
warn_nonnumeric_sort = TRUE

)

moving_median(
formula = NULL,
data = NULL,
x = NULL,
y = NULL,
window_width_n = NULL,

30 paste_blocks

window_width = NULL,
window_width_n_frac = NULL,
window_width_frac = NULL,
na.rm = TRUE,
warn_nonnumeric_sort = TRUE

)

Arguments

formula Formula specifying the numeric response (density) and numeric predictor (time).

data Dataframe containing variables in formula

x A vector of predictor values to smooth along (e.g. time)

y A vector of response values to be smoothed (e.g. density).

window_width_n Number of data points wide the moving window is (therefore, must be an odd
number of points)

window_width Width of the moving window (in units of x)
window_width_n_frac

Width of the window (as a fraction of the total number of data points).
window_width_frac

Width of the window (as a fraction of the range of x)

na.rm logical whether NA’s should be removed before analyzing
warn_nonnumeric_sort

logical whether warning should be issued when predictor variable that data is
sorted by is non-numeric.

Details

Either x and y or formula and data must be provided.

Values of NULL or NA will be ignored for any of window_width_n, window_width, window_width_n_frac,
or window_width_frac

Value

Vector of smoothed data, with NA’s appended at both ends

paste_blocks Paste a list of blocks into a single block

Description

This function uses paste to concatenate the same-location entries of a list of data.frames together
(i.e. all the first row-first column values are pasted together, all the second row-first column values
are pasted together, etc.)

predict_interpolation 31

Usage

paste_blocks(blocks, sep = "_", nested_metadata = NULL)

Arguments

blocks Blocks, either a single data.frame or a list of data.frames
sep String to use as separator for output pasted values
nested_metadata

A logical indicating the existence of nested metadata in the blockmeasures
list, e.g. as is typically output by read_blocks. If NULL, will attempt to infer
existence of nested metadata

Value

If nested_metadata = TRUE (or is inferred to be TRUE), a list containing a list containing: 1. a
data.frame with the pasted data values from blocks, and 2. a vector with the pasted metadata
values from blocks

If nested_metadata = FALSE (or is inferred to be FALSE), a list containing data.frame’s with the
pasted values from blocks

predict_interpolation Predict data by linear interpolation from existing data

Description

Predict data by linear interpolation from existing data

Usage

predict_interpolation(
x,
y,
newdata,
extrapolate_predictions = TRUE,
na.rm = TRUE

)

Arguments

x A vector of known predictor values.
y A vector of known response values.
newdata A vector of new predictor values for which the response value will be predicted
extrapolate_predictions

Boolean indicating whether values of newdata that are out of the domain of
x should be predicted (by extrapolating the slope from the endpoints of x). If
FALSE, such values will be returned as NA.

na.rm logical whether NA’s should be removed before making predictions

32 read_blocks

Value

A vector of response values for each predictor value in newdata

print_df Nicely print the contents of a data.frame

Description

This function uses write.table to print the input data.frame in a nicely-formatted manner that
is easy to read

Usage

print_df(x, col.names = FALSE, row.names = FALSE)

Arguments

x The data.frame to be printed

col.names Boolean for whether column names should be printed

row.names Boolean for whether row names should be printed

read_blocks Read blocks

Description

A function that reads blocks into the R environment

Usage

read_blocks(
files,
filetype = NULL,
startrow = NULL,
endrow = NULL,
startcol = NULL,
endcol = NULL,
sheet = NULL,
metadata = NULL,
block_names = NULL,
block_names_header = "block_name",
block_names_dot = FALSE,
block_names_path = TRUE,
block_names_ext = FALSE,
header = NA,

read_blocks 33

sider = NA,
wellnames_numeric = FALSE,
na.strings = c("NA", ""),
extension,
block_name_header,
...

)

Arguments

files A vector of filepaths relative to the current working directory where each filepath
is a single plate read

filetype (optional) the type(s) of the files. Options include:
"csv", "xls", or "xlsx".
"tbl" or "table" to use read.table to read the file, "csv2" to use read.csv2, "delim"
to use read.delim, or "delim2" to use read.delim2.
If none provided, read_blocks will infer filetype(s) from the extension(s) in
files. When extension is not "csv", "xls", or "xlsx", will use "table".

startrow, endrow, startcol, endcol
(optional) the rows and columns where the measures data are located in files.
Can be a vector or list the same length as files, or a single value that applies to
all files. Values can be numeric or a string that will be automatically converted
to numeric by from_excel.
If not provided, data is presumed to begin on the first row and column of the
file(s) and end on the last row and column of the file(s).

sheet (optional) If data is in .xls or .xlsx files, which sheet it is located on. Defaults to
the first sheet if not specified

metadata (optional) non-spectrophotometric data that should be associated with each read
blockmeasures. A named list where each item in the list is either: a vector of
length 2, or a list containing two vectors.
In the former case, each vector should provide the row and column where the
metadata is located in all of the blockmeasures input files.
In the latter case, the first vector should provide the rows where the metadata is
located in each of the corresponding input files, and the second vector should
provide the columns where the metadata is located in each of the corresponding
input files. (This case is typically used when reading multiple blocks from a
single file.)

block_names (optional) vector of names corresponding to each plate in files. If not provided,
block_names are inferred from the filenames

block_names_header

The name of the metadata field containing the block_names

block_names_dot

If block_names are inferred from filenames, should the leading ’./’ (if any) be
retained

block_names_path

If block_names are inferred from filenames, should the path (if any) be retained

34 read_blocks

block_names_ext

If block_names are inferred from filenames, should the file extension (if any) be
retained

header TRUE, FALSE, or NA, or a vector of such values, indicating whether the file(s) con-
tains the column names as its first line. If header = NA will attempt to infer the
presence of column names. If header = FALSE or no column names are inferred
when header = NA, column names will be generated automatically according to
wellnames_numeric

sider TRUE, FALSE, or NA, or a vector of such values, indicating whether the file(s)
contains the row names as its first column. If sider = NA will attempt to in-
fer the presence of row names. If sider = FALSE or no row names are in-
ferred when sider = NA, row names will be generated automatically according
to wellnames_numeric

wellnames_numeric

If row names and column names are not provided in the input dataframe as
specified by header and sider, then names will be generated automatically
according to wellnames_numeric.
If wellnames_numeric is TRUE, rows and columns will be numbered with "R"
and "C" prefixes, respectively.
If wellnames_numeric is FALSE, rows will be lettered A through Z, while
columns will be numbered

na.strings A character vector of strings which are to be interpreted as NA values by read.csv,
read_xls, read_xlsx, or read.table

extension Deprecated, use filetype instead
block_name_header

Deprecated, use block_names_header instead
... Other arguments passed to read.csv, read_xls, read_xlsx, or read.table

Details

For metadata, read_blocks can handle an arbitrary number of additional pieces of information to
extract from each blockcurve file as metadata. These pieces of information are specified as a named
list of vectors where each vector is the c(row, column) where the information is to be pulled from
in the input files.

This metadata is returned as the second list element of each blockcurve, e.g.:

[[1]] [1] "data" #1 [2] "metadata" [2][1] name #1

[2][2] date-time #1

[2][3] temp #1

[[2]] [1] "data" #2 [2] "metadata" [2][1] name #2

[2][2] date-time #2

[2][3] temp #2

...

Calling uninterleave on the output of read_blocks works on block data and the associated metadata
because uninterleave operates on the highest level entries of the list (the [[1]] [[2]] level items),
leaving the meta-data associated with the block data

read_tidys 35

trans_block_to_wide integrates this metadata into the wide-shaped dataframe it produces

Value

A list where each entry is a list containing the block data frame followed by the block_names (or
filenames, if block_names is not provided) and any specified metadata.

read_tidys Read tidy-shaped files

Description

A function that imports tidy-shaped files into R. Largely acts as a wrapper for read.csv, read_xls,
read_xls, or read_xlsx, but can handle multiple files at once and has additional options for taking
subsets of rows/columns rather than the entire file and for adding filename or run names as an added
column in the output.

Usage

read_tidys(
files,
filetype = NULL,
startrow = NULL,
endrow = NULL,
startcol = NULL,
endcol = NULL,
sheet = NULL,
run_names = NULL,
run_names_header = NULL,
run_names_dot = FALSE,
run_names_path = TRUE,
run_names_ext = FALSE,
na.strings = c("NA", ""),
extension,
names_to_col,
...

)

Arguments

files A vector of filepaths (relative to current working directory) where each one is a
tidy-shaped data file

filetype (optional) the type(s) of the files. Options include:
"csv", "xls", or "xlsx".
"tbl" or "table" to use read.table to read the file, "csv2" to use read.csv2, "delim"
to use read.delim, or "delim2" to use read.delim2.
If none provided, read_tidys will infer filetype(s) from the extension(s) in
files. When extension is not "csv", "xls", or "xlsx", will use "table".

36 read_tidys

startrow, endrow, startcol, endcol
(optional) the rows and columns where the data are located in files.
Can be a vector or list the same length as files, or a single value that applies to
all files. Values can be numeric or a string that will be automatically converted
to numeric by from_excel.
If not provided, data is presumed to begin on the first row and column of the
file(s) and end on the last row and column of the file(s).

sheet The sheet of the input files where data is located (if input files are .xls or .xlsx).
If not specified defaults to the first

run_names Names to give the tidy files read in. By default uses the file names if not spec-
ified. These names may be added to the resulting data frame depending on the
value of the names_to_col argument

run_names_header

Should the run names (provided in run_names or inferred from files) be added
as a column to the output?
If run_names_header is TRUE, they will be added with the column name "run_name"
If run_names_header is FALSE, they will not be added.
If run_names_header is a string, they will be added and the column name will
be the string specified for run_names_header.
If run_names_header is NULL, they only will be added if there are multiple
tidy data.frames being read. In which case, the column name will be "run_name"

run_names_dot If run_names are inferred from filenames, should the leading ’./’ (if any) be
retained

run_names_path If run_names are inferred from filenames, should the path (if any) be retained

run_names_ext If run_names are inferred from filenames, should the file extension (if any) be
retained

na.strings A character vector of strings which are to be interpreted as NA values by read.csv,
read_xls, read_xlsx, or read.table

extension Deprecated, use filetype instead

names_to_col Deprecated, use run_names_header instead

... Other arguments passed to read.csv, read_xls, read_xlsx, or read.table sheet

Details

startrow, endrow, startcol, endcol, sheet and filetype can either be a single value that ap-
plies for all files or vectors or lists the same length as files

Note that the startrow is always assumed to be a header

Value

A dataframe containing a single tidy data.frame, or A list of tidy-shaped data.frames named by
filename

read_wides 37

read_wides Read wides

Description

A function that imports widemeasures in files into the R environment

Usage

read_wides(
files,
filetype = NULL,
startrow = NULL,
endrow = NULL,
startcol = NULL,
endcol = NULL,
header = TRUE,
sheet = NULL,
run_names = NULL,
run_names_header = "file",
run_names_dot = FALSE,
run_names_path = TRUE,
run_names_ext = FALSE,
metadata = NULL,
na.strings = c("NA", ""),
extension,
names_to_col,
...

)

Arguments

files A vector of filepaths (relative to current working directory) where each one is a
widemeasures set of data

filetype (optional) the type(s) of the files. Options include:
"csv", "xls", or "xlsx".
"tbl" or "table" to use read.table to read the file, "csv2" to use read.csv2, "delim"
to use read.delim, or "delim2" to use read.delim2.
If none provided, read_wides will infer filetype(s) from the extension(s) in
files. When extension is not "csv", "xls", or "xlsx", will use "table".

startrow, endrow, startcol, endcol
(optional) the rows and columns where the data are located in files.
Can be a vector or list the same length as files, or a single value that applies to
all files. Values can be numeric or a string that will be automatically converted
to numeric by from_excel.
If not provided, data is presumed to begin on the first row and column of the
file(s) and end on the last row and column of the file(s).

38 read_wides

header logical for whether there is a header in the data. If FALSE columns are simply
numbered. If TRUE, the first row of the data (startrow if specified) is used as
the column names

sheet The sheet of the input files where data is located (if input files are .xls or .xlsx).
If not specified defaults to the first sheet

run_names Names to give the widemeasures read in. By default uses the file names if not
specified

run_names_header

Should the run names (provided in run_names or inferred from files) be added
as a column to the widemeasures? If run_names_header is NULL, they will not
be. If run_names_header is a string, that string will be the column header for
the column where the names will be stored

run_names_dot If run_names are inferred from filenames, should the leading ’./’ (if any) be
retained

run_names_path If run_names are inferred from filenames, should the path (if any) be retained

run_names_ext If run_names are inferred from filenames, should the file extension (if any) be
retained

metadata (optional) non-spectrophotometric data that should be associated with each read
widemeasures. A named list where each item in the list is either: a vector of
length 2, or a list containing two vectors.
In the former case, each vector should provide the row and column where the
metadata is located in all of the blockmeasures input files.
In the latter case, the first vector should provide the rows where the metadata is
located in each of the corresponding input files, and the second vector should
provide the columns where the metadata is located in each of the corresponding
input files. (This case is typically used when reading multiple blocks from a
single file.)

na.strings A character vector of strings which are to be interpreted as NA values by read.csv,
read_xls, read_xlsx, or read.table

extension Deprecated, use filetype instead

names_to_col Deprecated, use run_names_header instead

... Other arguments passed to read.csv, read_xls, read_xlsx, or read.table

Details

startrow, endrow, startcol, endcol, timecol, sheet and filetype can either be a single value that applies
for all files or vectors or lists the same length as files,

Value

A dataframe containing a single widemeasures, or A list of widemeasures named by filename

separate_tidy 39

separate_tidy Separate a column into multiple columns

Description

This function is primarily a wrapper for separate, which turns a single character column into multi-
ple columns

Usage

separate_tidy(
data,
col,
into = NULL,
sep = "_",
coerce_NA = TRUE,
na.strings = "NA",
message_inferred_into = TRUE,
...

)

Arguments

data A data frame
col Column name or position
into A character vector of the new column names. Use NA to omit the variable in the

output.
If NULL, separate_tidy will attempt to infer the new column names by split-
ting the column name of col

sep Separator between columns passed to separate:
If character, sep is interpreted as a regular expression.
If numeric, sep is interpreted as character positions to split at. Positive values
start at 1 at the far-left of the string; negative values start at -1 at the far-right of
the string. The length of sep should be one less than into

coerce_NA logical dictating if strings matching any of na.strings will be coerced into NA
values after separating.

na.strings A character vector of strings which are to be interpreted as NA values if coerce_NA
== TRUE

message_inferred_into

logical whether column names for into should be printed in a message when
inferred

... Other arguments passed to separate

Value

A data frame containing new columns in the place of col

40 smooth_data

smooth_data Smooth data

Description

This function calls other functions to smooth growth curve data

Usage

smooth_data(
...,
x = NULL,
y = NULL,
sm_method,
subset_by = NULL,
return_fitobject = FALSE,
warn_ungrouped = TRUE,
warn_gam_no_s = TRUE

)

Arguments

... Arguments passed to loess, gam, moving_average, moving_median, or smooth.spline.
Typically includes tuning parameter(s), which in some cases are required. See
Details for more information.

x An (often optional) vector of predictor values to smooth along (e.g. time)

y A vector of response values to be smoothed (e.g. density). If NULL, formula
and data *must* be provided via ...

sm_method Argument specifying which smoothing method should be used to smooth data.
Options include "moving-average", "moving-median", "loess", "gam", and "smooth.spline".

subset_by An optional vector as long as y. y will be split by the unique values of this
vector and the smoothed data for each group will be calculated independently of
the others.
This provides an internally-implemented approach similar to group_by and mu-
tate

return_fitobject

logical whether entire object returned by fitting function should be returned. If
FALSE, just fitted values are returned.

warn_ungrouped logical whether warning should be issued when smooth_data is being called on
ungrouped data and subset_by = NULL.

warn_gam_no_s logical whether warning should be issued when gam is used without s() in the
formula.

solve_linear 41

Details

For moving_average and moving_median, passing window_width or window_width_n via ... is
required. window_width sets the width of the moving window in units of x, while window_width_n
sets the width in units of number of data points. Larger values for either will produce more
"smoothed" data.

For loess, the span argument sets the fraction of data points that should be included in each calcu-
lation. It’s typically best to specify, since the default of 0.75 is often too large for growth curves
data. Larger values of span will produce more more "smoothed" data

For gam, both arguments to gam and s can be provided via Most frequently, the k argument to
s sets the number of "knots" the spline-fitting can use. Smaller values will be more "smoothed".

When using sm_method = "gam", advanced users may also modify other parameters of s(), includ-
ing the smoothing basis bs. These bases can be thin plate (bs = "tp", the default), cubic regressions
(bs = "cr"), or many other options (see s). I recommend leaving the default thin plate regressions,
whose main drawback is that they are computationally intensive to calculate. For growth curves
data, this is unlikely to be relevant.

As an alternative to passing y, for more advanced needs with loess or gam, formula and data can
be passed to smooth_data via the ... argument (in lieu of y).

In this case, the formula should specify the response (e.g. density) and predictors. For gam smooth-
ing, the formula should typically be of the format: y ~ s(x), which uses s to smooth the data. The
data argument should be a data.frame containing the variables in the formula. In such cases,
subset_by can still be specified as a vector with length nrow(data)

Value

If return_fitobject == FALSE:

A vector, the same length as y, with the now-smoothed y values

If return_fitobject == TRUE:

A list the same length as unique(subset_by) where each element is an object of the same class as
returned by the smoothing method (typically a named list-like object)

solve_linear Return missing information about a line

Description

Takes a set of inputs that is sufficient information to infer a line and then returns information not
provided (either the slope, an x point on the line, or a y point on the line)

Usage

solve_linear(
x1,
y1,
x2 = NULL,

42 ThresholdFunctions

y2 = NULL,
x3 = NULL,
y3 = NULL,
m = NULL,
named = TRUE

)

Arguments

x1, y1 A point on the line

x2, y2 An additional point on the line

x3, y3 An additional point on the line

m The slope of the line

named logical indicating whether the returned value(s) should be named according to
what they are (m, x2, y2, x3, or y3)

Details

Note that there is no requirement that x1 < x2 < x3: the points can be in any order along the line.

solve_linear works with vectors of all inputs to solve multiple lines at once, where the ith element
of each argument corresponds to the ith output. Note that all lines must be missing the same
information. Input vectors will be recycled as necessary.

Value

A named vector with the missing information from the line:

If m and x2 are provided, y2 will be returned

If m and y2 are provided, x2 will be returned

If x2 and y2 are provided, but neither x3 nor y3 are provided, m will be returned

If x2 and y2 are provided and one of x3 or y3 are provided, the other (y3 or x3) will be returned

ThresholdFunctions Find point(s) when a numeric vector crosses some threshold

Description

These functions take a vector of y values and identify points where the y values cross some threshold
y value.

ThresholdFunctions 43

Usage

find_threshold_crosses(
y,
x = NULL,
threshold,
return = "index",
return_rising = TRUE,
return_falling = TRUE,
return_endpoints = TRUE,
subset = NULL,
na.rm = TRUE

)

first_below(
y,
x = NULL,
threshold,
return = "index",
return_endpoints = TRUE,
...

)

first_above(
y,
x = NULL,
threshold,
return = "index",
return_endpoints = TRUE,
...

)

Arguments

y Numeric vector of y values in which to identify threshold crossing event(s)

x Optional numeric vector of corresponding x values

threshold Threshold y value of interest

return One of c("index", "x"), determining whether the function will return the index
or x value associated with the threshold-crossing event.
If index, it will refer to the data point immediately after the crossing event.
If x, it will use linear interpolation and the data points immediately before and
after the threshold-crossing to return the exact x value when the threshold cross-
ing occurred

return_rising logical for whether crossing events where y rises above threshold should be
returned

return_falling logical for whether crossing events where y falls below threshold should be
returned

44 to_excel

return_endpoints

logical for whether startpoint should be returned when the startpoint is above
threshold and return_rising = TRUE, or when the startpoint is below threshold
and return_falling = TRUE

subset A vector of logical values indicating which x and y values should be included
(TRUE) or excluded (FALSE).
If return = "index", index will be for the whole vector and not the subset of
the vector

na.rm logical whether NA’s should be removed before analyzing. If return = 'index',
indices will refer to the original y vector *including* NA values

... (for first_above and first_below) other arguments to pass to find_threshold_crosses

Value

find_threshold_crosses returns a vector corresponding to all the threshold crossings.

first_above returns only the first time the y values rise above the threshold, so is a shortcut for
find_threshold_crosses(return_rising = TRUE, return_falling = FALSE)[1]

first_below returns only the first time the y values fall below the threshold, so is a shortcut for
find_threshold_crosses(return_rising = FALSE, return_falling = TRUE)[1]

If return = "index", the returned value(s) are the indices immediately following threshold cross-
ing(s)

If return = "x", the returned value(s) are the x value(s) corresponding to threshold crossing(s)

If no threshold-crossings are detected that meet the criteria, will return NA

to_excel A function that converts numbers into base-26 Excel-style letters

Description

A function that converts numbers into base-26 Excel-style letters

Usage

to_excel(x)

Arguments

x A vector of numbers in base-10

Value

A vector of letters in Excel-style base-26 format

train_smooth_data 45

train_smooth_data Test efficacy of different smoothing parameters

Description

This function is based on train, which runs models (in our case different smoothing algorithms) on
data across different parameter values (in our case different smoothness parameters).

Usage

train_smooth_data(
...,
x = NULL,
y = NULL,
sm_method,
preProcess = NULL,
weights = NULL,
metric = ifelse(is.factor(y), "Accuracy", "RMSE"),
maximize = ifelse(metric %in% c("RMSE", "logLoss", "MAE", "logLoss"), FALSE, TRUE),
trControl = caret::trainControl(method = "cv"),
tuneGrid = NULL,
tuneLength = ifelse(trControl$method == "none", 1, 3),
return_trainobject = FALSE

)

Arguments

... Arguments passed to smooth_data. These arguments cannot overlap with any of
those to be tuned.

x A vector of predictor values to smooth along (e.g. time)

y A vector of response values to be smoothed (e.g. density).

sm_method Argument specifying which smoothing method should be used. Options include
"moving-average", "moving-median", "loess", "gam", and "smooth.spline".

preProcess A string vector that defines a pre-processing of the predictor data. The default is
no pre-processing. See train for more details.

weights A numeric vector of case weights. This argument currently does not affect any
train_smooth_data models.

metric A string that specifies what summary metric will be used to select the optimal
model. By default, possible values are "RMSE" and "Rsquared" for regression.
See train for more details.

maximize A logical: should the metric be maximized or minimized?

trControl A list of values that define how this function acts. See train and trainControl for
more details.

46 trans_block_to_wide

tuneGrid A data frame with possible tuning values, or a named list containing vectors
with possible tuning values. If a data frame, the columns should be named the
same as the tuning parameters. If a list, the elements of the list should be named
the same as the tuning parameters. If a list, expand.grid will be used to make all
possible combinations of tuning parameter values.

tuneLength An integer denoting the amount of granularity in the tuning parameter grid. By
default, this argument is the number of levels for each tuning parameter that
should be generated. If trControl has the option search = "random", this is
the maximum number of tuning parameter combinations that will be generated
by the random search. (NOTE: If given, this argument must be named.)

return_trainobject

A logical indicating whether the entire result of train should be returned, or only
the results element.

Details

See train for more information.

The default method is k-fold cross-validation (trControl = caret::trainControl(method = "cv")).

For less variable, but more computationally costly, cross-validation, users may choose to increase
the number of folds. This can be done by altering the number argument in trainControl, or by
setting method = "LOOCV" for leave one out cross-validation where the number of folds is equal to
the number of data points.

For less variable, but more computationally costly, cross-validation, users may alternatively choose
method = "repeatedcv" for repeated k-fold cross-validation.

For more control, advanced users may wish to call train directly, using makemethod_train_smooth_data
to specify the method argument.

Value

If return_trainobject = FALSE (the default), a data frame with the values of all tuning parameter
combinations and the training error rate for each combination (i.e. the results element of the
output of train).

If return_trainobject = TRUE, the output of train

trans_block_to_wide Transform blocks to wides

Description

Takes blocks and returns them in a wide format

trans_wide_to_tidy 47

Usage

trans_block_to_wide(
blocks,
wellnames_sep = "",
nested_metadata = NULL,
colnames_first = FALSE

)

Arguments

blocks Blocks, either a single data.frame or a list of data.frames

wellnames_sep String to use as separator for well names between rowname and column name
(ordered according to colnames_first

nested_metadata

A logical indicating the existence of nested metadata in the blockmeasures
list, e.g. as is typically output by read_blocks. If NULL, will attempt to infer
existence of nested metadata

colnames_first In the wellnames created by paste-ing the rownames and column names, should
the column names come first

Value

A single widemeasures data.frame

trans_wide_to_tidy Pivot widemeasures longer

Description

Essentially a wrapper for tidyr::pivot_longer that works on both a single widemeasures as well as a
list of widemeasures

Usage

trans_wide_to_tidy(
wides,
data_cols = NA,
id_cols = NA,
names_to = "Well",
values_to = "Measurements",
values_to_numeric = TRUE,
...

)

48 uninterleave

Arguments

wides A single widemeasures data.frame, or a list of widemeasures data.frame’s
data_cols, id_cols

Specifies which columns have data vs are ID’s (in pivot_longer parlance). Each
can be a single vector (which will be applied for all widemeasures) or a list
of vectors, with each vector corresponding to the same-index widemeasure in
widemeasures

Entries that are NA in the list will not be used
If neither data_cols nor id_cols are specified, user must provide arguments to
tidyr::pivot_longer via ... for at least the cols argument and these arguments
provided via ... will be used for all widemeasures data.frame’s

names_to, values_to
Specifies the output column names created by tidyr::pivot_longer. Each can
be provided as vectors the same length as widemeasures Note that if neither
data_cols nor id_cols

values_to_numeric

logical indicating whether values will be coerced to numeric. See below for
when this may be overridden by arguments passed in ...

... Other functions to be passed to pivot_longer Note that including values_transform
here will override the behavior of values_to_numeric

Value

Pivoted longer data.frame (if widemeasures is a single data.frame) or list of pivoted longer data.frame’s
(if widemeasures is a list of data.frame’s)

uninterleave Uninterleave list

Description

Takes a list that is actually interleaved elements from multiple sources and uninterleaves them into
the separate sources. For instance, a list of blockmeasures that actually corresponds to two different
plates can be split into two lists, each of the blockmeasures corresponding to a single plate. Unin-
terleave assumes that the desired sub-groups are perfectly interleaved in the input (e.g. items belong
to sub-groups 1,2,3,1,2,3,...)

Usage

uninterleave(interleaved_list, n)

Arguments

interleaved_list

A list of R objects
n How many output sub lists there should be (i.e. how many groups the interleaved

list should be divided into)

WhichMinMaxGC 49

Value

A list of lists of R objects

WhichMinMaxGC Where is the Min() or Max() or first TRUE or FALSE?

Description

Determines the location, i.e. index, of the (first) minimum or maximum of a numeric (or logical)
vector.

Usage

which_min_gc(x, empty_NA = TRUE)

which_max_gc(x, empty_NA = TRUE)

Arguments

x numeric (logical, integer, or double) vector or an R object for which the internal
coercion to double works whose min or max is searched for.

empty_NA logical, indicating if an empty value should be returned as NA (the default) or as
integer(0) (the same as which.min and which.max).

Details

These functions are wrappers for which.min and which.max, with the additional argument empty_NA.

Value

If empty_NA = FALSE, identical to which.min or which.max

If empty_NA = TRUE, identical to which.min or which.max except that, in cases where which.min
or which.max would return integer(0), which_min_gc and which_max_gc return NA

50 write_blocks

write_blocks Write block designs to csv

Description

This function writes block-shaped lists (as created by read_blocks or make_design) to csv files,
including both data and metadata in a variety of output formats

Usage

write_blocks(
blocks,
file,
output_format = "multiple",
block_name_location = NULL,
block_name_header = "block_name",
paste_sep = "_",
filename_sep = "_",
na = "",
dir = NULL,
...

)

Arguments

blocks list of block-shaped data to be written to file

file NULL, a character string naming a file to write to, or a vector of character strings
naming files to write to.
A file name is required when output_format = "single"

A file name can be specified when output_format = "pasted", or file can
be set to NULL as long as block_name_location = "filename" (where pasted
block_name metadata will be used for the file name)
File names can be specified when output_format = "multiple", or file can
be set to NULL as long as block_name_location = "filename" (where the block_name
metadata will be used for the file names)

output_format One of "single", "pasted", "multiple".
"single" will write all blocks into a single csv file, with an empty row between
successive blocks.
"pasted" will paste all blocks together using a paste_sep, and then write that
now-pasted block to a single csv file.
"multiple" will write each block to its own csv file.

block_name_location

Either NULL, ’filename’ or ’file’.
If NULL, block_name_location will be automatically selected based on output_format.
For output_format = 'single' and output_format = 'pasted', block_name_location

write_blocks 51

defaults to ’file’. For output_format = 'multiple', block_name_location
defaults to ’filename’
If ’filename’, the block_name metadata will be used as the output file name(s)
when no file name(s) are provided, or appended to file name(s) when they have
been provided.
If ’file’, the block_name metadata will be included as a row in the output file.

block_name_header

The name of the field containing the block_names

paste_sep When output_format = 'pasted', what character will be used to paste to-
gether blocks.

filename_sep What character will be used to paste together filenames when block_name_location
= ’filename’.

na The string to use for missing values in the data.

dir The directory that file(s) will be written into. When dir = NULL, writes to the
current working directory. (Can only be used when file = NULL)

... Other arguments passed to write.table

Value

Nothing, but R objects are written to files

Index

∗ datasets
example_design_tidy, 9
example_widedata, 9
example_widedata_noiseless, 10

auc, 3

block_tidydesign, 4

calc_deriv, 4
centroid (CentroidFunctions), 7
centroid_both (CentroidFunctions), 7
centroid_x (CentroidFunctions), 7
centroid_y (CentroidFunctions), 7
CentroidFunctions, 7

doubling_time, 8

example_design_tidy, 9
example_widedata, 9
example_widedata_noiseless, 10
expand.grid, 46
extr_val, 13
ExtremaFunctions, 11

find_local_extrema, 14
find_local_extrema (ExtremaFunctions),

11
find_threshold_crosses

(ThresholdFunctions), 42
first_above (ThresholdFunctions), 42
first_below (ThresholdFunctions), 42
first_maxima, 14
first_maxima (ExtremaFunctions), 11
first_minima (ExtremaFunctions), 11
first_peak, 14
from_excel, 15, 33, 36, 37
full_join, 27, 28

gam, 40, 41
gc_smooth.spline, 16

group_by, 5, 40

import_blockdesigns, 16
import_blockmeasures, 18
inner_join, 28

lag_time, 19
left_join, 28
loess, 40, 41

make_design, 22, 24, 50
make_designpattern, 24
make_example, 25
make_tidydesign, 26
makemethod_train_smooth_data, 21, 46
max_gc (MinMaxGC), 28
mdp (make_designpattern), 24
merge_dfs, 27
min_gc (MinMaxGC), 28
MinMaxGC, 28
moving_average, 40, 41
moving_average (MovingWindowFunctions),

29
moving_median, 40, 41
moving_median (MovingWindowFunctions),

29
MovingWindowFunctions, 29
mutate, 5, 40
mutate-joins, 27

paste, 4, 23, 30, 47
paste_blocks, 16, 18, 30
pivot_longer, 48
predict_interpolation, 31
print_df, 32

read.csv, 34–36, 38
read.csv2, 33, 35, 37
read.delim, 33, 35, 37
read.delim2, 33, 35, 37
read.table, 33–38

52

INDEX 53

read_blocks, 16–19, 31, 32, 47, 50
read_tidys, 35
read_wides, 37
read_xls, 34–36, 38
read_xlsx, 34–36, 38
right_join, 28

s, 41
separate, 39
separate_tidy, 16–18, 39
smooth.spline, 16, 40
smooth_data, 40, 45
solve_linear, 41
st_centroid, 8

ThresholdFunctions, 42
to_excel, 44
train, 21, 45, 46
train_smooth_data, 45
trainControl, 45, 46
trans_block_to_wide, 16, 18, 19, 35, 46
trans_wide_to_tidy, 16, 18, 47

uninterleave, 18, 19, 34, 48

which_max_gc (WhichMinMaxGC), 49
which_min_gc (WhichMinMaxGC), 49
WhichMinMaxGC, 49
write.table, 51
write_blocks, 50

	auc
	block_tidydesign
	calc_deriv
	CentroidFunctions
	doubling_time
	example_design_tidy
	example_widedata
	example_widedata_noiseless
	ExtremaFunctions
	extr_val
	first_peak
	from_excel
	gc_smooth.spline
	import_blockdesigns
	import_blockmeasures
	lag_time
	makemethod_train_smooth_data
	make_design
	make_designpattern
	make_example
	make_tidydesign
	merge_dfs
	MinMaxGC
	MovingWindowFunctions
	paste_blocks
	predict_interpolation
	print_df
	read_blocks
	read_tidys
	read_wides
	separate_tidy
	smooth_data
	solve_linear
	ThresholdFunctions
	to_excel
	train_smooth_data
	trans_block_to_wide
	trans_wide_to_tidy
	uninterleave
	WhichMinMaxGC
	write_blocks
	Index

